
1

Netconf 2024 topics

Jason Xing
<kernelxing@tencent.com>

2

Extending SO_TIMESTAMPINGFeature

3

1. History

• It was first introduced in 2009 by Patrick Ohly with SOFTWARE
and HARDWARE timestamp features only.

• In 2014 and in the next few years, Willem de Bruijn and other
developers implemented a few important generation and
control flags. Then, users have the abilities to trace the
historical behaviors well to know what exactly happened.

• Google showed best practices (like Fathom & Dapper) in
production in 2022 and 2023.

What are the major milestones more than one decade?

4

2. Use Cases

• For users, SO_TIMESTAMPING mostly serves the RPC
applications and serves well

• For admins, SO_TIMESTAMPING can be used as a detector to
know what the situations in qdisc/driver/hardware/network are

What can we do with this feature enabled?

5

3. Goals

• In the short run, I am looking for a good way of deploying in
production quickly and transparently.

• In the long run, I am trying to equip the feature with more
effective information and efficient means for users/admins

Is it enough for DB or RPC applications currently?

6

4. Current State

SO_TIMESTAMPING is really GOOD, which can help users detect
the latency in the rx/tx path, but....

We are facing three kinds of dilemmas, see the red lines:
• Applications need changes

• Modify the params in setsockopt/sendmsg/recvmsg
• for(...) loops to parse the cmsgs

• Additional overhead per recv call
• Syscalls: 0-2 times setsockopt() + X times recvmsg()

(X is the number of tx generation flags)
• Extra analysis in apps

• Uapi limits the future
• If we have flaws in the original design
• If we have more useful data to output

Details

7

5. setsockopt

• Let it pass the check in sol_socket_sockopt(), which is implemented in the kernel module,
and then set the existing/new sockets with related flags.

• In the future, we could implement bpf_setsockopt to help us.
• We are going to implement more new trace functions soon, or else it is meaningless

Make the first move to set option without any modification in apps

8

6.1 uprobe

• “Single digit, two microseconds”. Not acceptable :(

• Willem once talked about this one in netdevconf 0x17

If we try uprobe, what will happen?

9

6.2 kprobe (tx path)

• Try to hook during the generating timestamp phase
• SCM_TSTAMP_(SND/SCHED/ACK)

• Track __skb_complete_tx_timestamp() √
• Not consider the report flag

• OPT_STATS
• Re-implement tcp_get_timestamping_opt_stats() √

• Try to hook during the reporting timestamp phase
• SCM_TSTAMP_(SND/SCHED/ACK)

• Rely on extra recvmsg() syscalls ×
• Re-implement __sock_recv_timestamp() √

• OPT_STATS
• Hard to parse skb->data in different kernels ×

Can we try kprobe in the egress path?

Test with“ ./txtimestamp -4 -C -L 127.0.0.1 ”

Hook when generating tx timestamp

10

6.3 kprobe (rx path)

• Try to hook during the generating timestamp phase
• RX_SOFTWARE

• performance degradation ×
• Over 15% on the loopback

• Try to hook during the reporting timestamp phase
• RX_SOFTWARE

• Re-implement the same logic √
• TCP: tcp_recv_timestamp()
• Others: __sock_recv_timestamp()

Can we try kprobe in the ingress path?

Test with“./rxtimestamp”

Hook when reporting tx timestamp

11

6.4 kprobe (conclusion)

• Hook everywhere L

• Take care of so many conditions L

• Partially deprecate the existing flags L

• Cumulative skbs residing in the errqueue, which consumes sk_rmem_alloc L

• L

• Require less or even no modifications in apps, say, retrieving cmsgs in the loop J

• Admins get benefits J

• Easily extend OPT_STAT J

Is the kprobe method practical?

12

6.5 sk_rmem_alloc issue

• It only happens on the tx generation phase

• Hook __skb_tstamp_tx()
• sysctl –w net.core.tstamp_allow_data =0
• not enable SOF_TIMESTAMPING_OPT_TSONLY
• remove CAP_NET_RAW from socket file
• without super root privilege

• Actually I wrote a kernel module to hack and bypass this part instead of the
above workaround.

How to avoid “cumulative skbs residing in the errqueue”?

@@ -5517,6 +5517,10 @@ void __skb_tstamp_tx(struct sk_buff *orig_skb,
if (!skb_may_tx_timestamp(sk, tsonly))

return;

+ /* Match the specific flow and then return eariler */
+ if (TUPLE_MATCH(sk))
+ return;
+

if (tsonly) {
#ifdef CONFIG_INET

if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&

13

7.1 tracepoint (basic theory)

• Insert the tracepoint into the specific position where it is going
to report to the user space, so that we can easily parse the
useful data.

• No need to re-consider so many if-else and tsflags conditions

Since it is inevitable to modify the kernel, how about...?

14

7.2 tracepoint (code snippets v1)

@@ -976,6 +977,11 @@ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
else

put_cmsg_scm_timestamping(msg, &tss);

+ if (!skb_is_err_queue(skb))
+ trace_ingress_ts(sk, &tss);
+ else
+ trace_egress_ts(sk, &tss, &(SKB_EXT_ERR(skb)->ee));
+

@@ -2293,6 +2294,8 @@ void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
put_cmsg_scm_timestamping64(msg, tss);

else
put_cmsg_scm_timestamping(msg, tss);

+
+ trace_ingress_ts(sk, tss);

}
}

• Insert into the report function

• Print them when we are ready.

• Simple really but...

• Still rely on extra syscalls (recvmsg(MSG_ERRQUEUE))

A few notes:

15

7.3 tracepoint (code snippets v2)

@@ -2293,6 +2294,8 @@ void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
put_cmsg_scm_timestamping64(msg, tss);

else
put_cmsg_scm_timestamping(msg, tss);

+
+ trace_ingress_ts(sk, tss);

@@ -976,6 +977,9 @@ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
else

put_cmsg_scm_timestamping(msg, &tss);

+ if (!skb_is_err_queue(skb))
+ trace_ingress_ts(sk, &tss);

@@ -5422,6 +5424,10 @@ static void __skb_complete_tx_timestamp(struct sk_buff *skb,

if (err)
kfree_skb(skb);

+ else if (tsflags & SOF_TIMESTAMPING_SOFTWARE ||
+ (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
+ skb_hwtstamps(skb)->hwtstamp))
+ trace_egress_ts(sk, skb, &serr->ee)

• Insert into the generating function

• We only handle errqueue in tx path

• We have to add report flags check during the
generation phase

• One minor problem is that we mix the
generation and report logic

A few notes:

16

7.4 tracepoint (output)

TX monitor
echo 1 > events/timestamp/egress_ts/enable
./txtimestamp -4 -L -C 127.0.0.1

RX monitor
echo 1 > events/timestamp/ingress_ts/enable
./rxtimestamp --udp

17

7.5 tracepoint (OPT_STATS)

• We need to re-implement tcp_get_timestamping_opt_stats() during the generation phase or
the report phase. The latter is not very easy for we have to parse skb->data..

• It can be replaced by hooking tcp_get_timestamping_opt_stats() with bpf tools
• This tracepoint is not that necessary, which is only useful for the users who expect to see the

output from trace_pipe directly

A few notes:

// generation phase
@@ -3983,6 +3983,8 @@ struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
(......)
+ trace_egress_ts_with_opt_stat(sk, orig_skb); // sk is the key
+

// report phase
@@ -983,9 +983,11 @@ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,

trace_egress_ts(sk, &tss, &(SKB_EXT_ERR(skb)->ee));

if (skb_is_err_queue(skb) && skb->len &&
- SKB_EXT_ERR(skb)->opt_stats)
+ SKB_EXT_ERR(skb)->opt_stats) {

put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
skb->len, skb->data);

+ trace_egress_ts_with_opt_stat(sk, skb); // skb->data is the key
+ }

18

7.6 tracepoint (conclusion)

• Too much noise, like chronyd L

• Limited size of trace_pipe L

• Possible cumulative skbs issue K

• A fine-grained solution J

• Very easy to use J

• Good news is that tracepoint is not uAPI J

• like kprobe
• Require _no_ modifications in apps except setsockopt J
• Admins get benefits J
• Easily extend OPT_STAT J

Is the tracepoint method practical?

19

7.7 tracepoint+OPT_OUTPUT (theory)

• We can take advantage of the setsockopt with tracepoint here, then let the users
decide if we expect to see the data through printing to trace_pipe.

• If socket does not have new option flag, it will behave exactly as before, which
means printing cmsgs in apps.

• setsockopt is per socket controlled while trace_pipe is controlled by admins. Is it
reasonable?

20

7.8 tracepoint+OPT_OUTPUT (code snippets)
// kernel
@@ -32,8 +32,9 @@ enum {

SOF_TIMESTAMPING_OPT_TX_SWHW = (1<<14),
SOF_TIMESTAMPING_BIND_PHC = (1 << 15),
SOF_TIMESTAMPING_OPT_ID_TCP = (1 << 16),

+ SOF_TIMESTAMPING_OPT_OUTPUT = (1 << 17),

@@ -2295,7 +2295,8 @@ void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
else

put_cmsg_scm_timestamping(msg, tss);

- trace_ingress_ts(sk, tss);
+ if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_OUTPUT)
+ trace_ingress_ts(sk, tss);

@@ -5424,9 +5424,10 @@ static void __skb_complete_tx_timestamp(struct sk_buff *skb,

if (err)
kfree_skb(skb);

- else if (tsflags & SOF_TIMESTAMPING_SOFTWARE ||
- (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
- skb_hwtstamps(skb)->hwtstamp))
+ else if ((READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_OUTPUT) &&
+ (tsflags & SOF_TIMESTAMPING_SOFTWARE ||
+ (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
+ skb_hwtstamps(skb)->hwtstamp)))

// kernel
@@ -977,7 +977,7 @@ void __sock_recv_timestamp(struct msghdr
*msg, struct sock *sk,

else
put_cmsg_scm_timestamping(msg, &tss);

- if (!skb_is_err_queue(skb))
+ if (tsflags & SOF_TIMESTAMPING_OPT_OUTPUT
&& !skb_is_err_queue(skb))

trace_ingress_ts(sk, &tss);

==
|| // txtimestamp.c
|| @@ -563,7 +563,8 @@ static void do_test(int family, unsigned int
|| report_opt)
||
|| sock_opt = SOF_TIMESTAMPING_SOFTWARE |
|| SOF_TIMESTAMPING_OPT_CMSG |
||- SOF_TIMESTAMPING_OPT_ID;
||+ SOF_TIMESTAMPING_OPT_ID |
||+ SOF_TIMESTAMPING_OPT_OUTPUT;
==

21

7.9 tracepoint+OPT_OUTPUT (conclusion)

• Possible cumulative skbs issue K

• Avoid too much noise (best effort) J

• like tracepoint
• A fine-grained solution J
• Very easy to use J
• Good news is that tracepoint is not uAPI
• Require no modifications in apps except setsockopt J
• Admins get benefits J
• Easily extend OPT_STAT J

Is the tracepoint method practical?

22

7.10 tracepoint+OPT_OUTPUT_ONLY (theory)

• Based on the OPT_OUTPUT, we can go further and disable the generation feature
thoroughly

• _Only_ allow reading timestamp from trace_pipe by admins.

• Avoid previous generation failure due to shortage of memory

• In order to save more cycles because no more skb allocation and so on

23

7.11 tracepoint+OPT_OUTPUT_ONLY (pseudo code)

@@ -33,8 +33,9 @@ enum {
SOF_TIMESTAMPING_BIND_PHC = (1 << 15),
SOF_TIMESTAMPING_OPT_ID_TCP = (1 << 16),
SOF_TIMESTAMPING_OPT_OUTPUT = (1 << 17),

+ SOF_TIMESTAMPING_OPT_OUTPUT_ONLY = (1 << 18),

+static void tstamp_report_direct(struct sock *sk, int type
+ struct skb_shared_hwtstamps *hwtstamps)
+{
+
+ if (tsonly && (tsflags & SOF_TIMESTAMPING_OPT_STATS) && sk_is_tcp(sk)) {
+ trace_egress_ts_stat(...);
+
+ if (hwtstamps)
+ *skb_trace_egress_ts_only(...,hwtstamps,...);
+ else
+ *skb_trace_egress_ts_only(...,ktime_get_real(),...);
+}

@@ -5489,6 +5505,11 @@ void __skb_tstamp_tx(struct sk_buff *orig_skb,
if (!skb_may_tx_timestamp(sk, tsonly))

return;

+ if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_OUTPUT) {
+ tstamp_report_direct(sk, tstype, hwtstamps);
+ return;
+ }

• We need to avoid skb related operations
• Memory check
• Allocation
• Add it into erruque

• Similar to __skb_tstamp_tx()

• We only need to handle egress path

A few notes:

24

7.12 tracepoint+OPT_OUTPUT_ONLY (conclusion)

• Break the previous design of timestamp feature due to deprecating errqueue K

• Save more cycles when generating timestamp skbs J

• Solve the cumulative skbs issue J

• like tracepoint + OPT_OUTPUT
• Avoid too much noise (best effort) J
• A fine-grained solution J
• Very easy to use J
• Good news is that tracepoint is not uAPI
• Require no modifications in apps except setsockopt J
• Admins get benefits J
• Easily extend OPT_STAT J

Is the tracepoint+setsockopt method practical?

25

8.1 Adding recv tracepoints in TCP

• Like red arrow 1, can we make a best guess about the other
side?
• NO? At least very complicated, because every ts

includes a tsoffset (see tcp_v4_init_ts_off())
• By mapping the initial tsval in SYN and the one in SYN

ACK which are recorded, so when the data arrives we
parse the tsval option and then get the relative time in
the local machine.

• Then, we roughly infer the elapsed time.

• Like red arrow 2, we can print more current ts in the key
functions
• It could be implemented easily based on prior

tracepoint* method.
• so that we can know the time consumed between

RX_SOFTWARE and TCP stack.

How to get more useful info in rx path?

26

8.2 Adding xmit tracepoints in TCP

• Timestamp is recorded in __dev_queue_xmit(), which means
we probably miss the best chance to do the TCP snapshot,
because the final skb traverses through TCP IP layer already.

• How about creating the snapshot when TCP stops sending skb
in tcp_write_xmit(), say, due to nagle policy?

Is creating the TCP snapshot too late?

27

8.3 Adding more fine-grained tracepoints

In order to narrow down the scope. If we have already learned
that the high latency happens somewhere like from userspace-
>dev xmit, what could we do next?

Here are a few possible high latency chances:
• Userspace timestamp> SCHED timestamp

• tcp_write_xmit() delays due to nagle or internal pacing
• netfilter delays due to possible external hook functions

• RX SOFTWARE timestamp -> ?
• process backlog delays due to ksoftirqd
• receive stack runs slowly due to many ptype_all
• tcp backlog delays due to the socket lock held by users

• Writing the bpf related programs to trace every functions in
the hot path seems clumsy, but we have no other alternatives.
Is it possible in the future with setting SO_TIMESTAMPING?

Further more, can we hook more functions?

28

9. Future?

• At present, we only make sure the sockets
with SO_TIMESTAMPING feature enabled do
not interfere with others, which outperforms
many bpf-based track tools.

• In the future, if all the sockets needs it, will it
have a huge side effect then? We are facing
the issue actually...

• Is it possible that we can trace most of key
functions without impacting performance.

If all the apps rely on the feature?

29

Thank you :) !!!

