
IPSec/NF Workshop 2023 Summary, (NF) technical debt

Florian Westphal
4096R/AD5FF600 fw@strlen.de

80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 AD5F F600

Sep 2023



IPsec workshop

▶ IPsec on Android (N. Harold)

▶ IP-TFS / RFC 9347 (C. Hopps)

▶ flowtable (forward path sw bypass) extensions for IPsec (P. Neira, S. Klassert)

▶ IKEv2 support for per-queue Child SAs (S. Klassert et al)

▶ Misc IKE/Signalling topics

▶ BEET revival/resurrection

▶ PF_KEY deprecation, ESPINUDP_NON_IKE removal

Bummer: PF_KEY details leaked into IPsec offload API



NFWS 2023

▶ bpf+nf
▶ make existing ct related kfuncs available to nf bpf progtype (D. Xu)
▶ bpfilter, current status (Q. Deslandes)

▶ Register tracking infra (Pablo)
▶ Misc Discussion topics

▶ userspace API, cookie attribute, grammar ambiguities in parser
▶ bug and patchwork backlog
▶ Existing test cases, lowlevel test API (Pablo)

▶ Multiple complaints about design issues (myself)



netfilter: introspection

poor interacticon of netfilter+dropwatch/drop monitoring tools

▶ drop anywhere in a netfilter subsystem? blames nf_hook_slow() due to
NF_DROP design

▶ needs to be improved



netfilter: introspection, plan

▶ add internal verdict: NF_DROP_REASON, not exposed to userspace
▶ Works like NF_STOLEN, but provides errno to stack
▶ incremental conversion:

s/return NF_DROP/kfree_skb_reason(); return NF_DROP_REASON(errno)/

▶ will at least pinpoint where drops happen (nftables, iptables, conntrack helper,
...).

▶ Keep back but in mind for later:
▶ ideally dropmonitor could tell rule/chain too, but 16 bit reason value is not enough

context
▶ pcpu scratchpad to stash chain/table info?
▶ tracepoint for NF_xxx return values in table eval loop?



Other items cooking on nf side

▶ bridge netfilter removal: would like to do it, not realistic – too popular
▶ kernel without arptables and ebtables support (via distro)?

▶ minor Kconfig plumbing
▶ arptables-nft/ebtables-nft would continue to work

▶ eventually same treatment for ip/ip6tables (setsockopt bits)

▶ most matches and targets would stay around

▶ code removal, e.g. rbtree set backend



Conntrack on bridge

▶ best case: you’ll eventually get a WARN_ONCE splat from conntrack core

▶ worst case: UaF crash

▶ The problem is with first skb of a flow

▶ Once connection is in hash table all is fine

Root cause: skb_clone’d reference same struct nf_conn



Conntrack assumptions for new packets

1. newly allocated nf_conn is owned exclusively by the skb

2. skb will NOT leave ip stack between pickup and table insertion
▶ for local: OUTPUT and POSTROUTING (confirm is last hook)
▶ for remote to local: PREROUTING and INPUT (confirm is last hook)
▶ for forward: PREROUTING and POSTROUTING (confirm is last hook)

Also means:

▶ no locking when (re)allocating/writing to conntrack extension area

▶ nf_conn is not in in hash table, so other cores cannot find it

▶ After insertion (confirm), extension area is no longer reallocated



Conntrack + bridge

Mostly worked just fine, even though bridge has to clone often:

for_each_port_in_bridge(p, br)

deliver_clone(skb, p)

Several ways to turn this into problem:

▶ Macvlan: handles b/mcast in work queue

▶ bridge netfilter: you can now use nfqueue

Clone gets moved to different core with not-yet-committed nf_conn? Race begins



How to fix this?

▶ don’t want to add code to skb_clone path

▶ don’t want to add locking in conntrack

Best proposal I could think of so far:

▶ register additional nfhook at bridge INPUT and POSTROUTING

▶ from those hooks: make a full copy of nf_conn, iff:

1. nf_conn not yet in hash (check nf_conn->status) AND
2. nf_conn refcount is 1

→ more hacks to keep bridge nf afloat. Problems:

▶ Can’t deal with all extension types, some contain list pointers

▶ No idea yet what to do in that case (mark as untracked?)

▶ what happens if the ”original“ skb is dropped? Can’t confirm in that case.



Unprivileged netns, CVEs

▶ as normal user: unshare -Unr → you get uid 0
▶ theoretically restricted to one network namespace, full sandbox
▶ but in practice a large swath of code paths now become accessible

▶ large number of bugs in nf_tables and other subsystems that allow privilege
escalation

▶ fix: sysctl user.max_user_namespaces=0

▶ but breaks software, notably chrome



Unprivileged netns, CVEs (2)

Huge influx of issues. Some bug classes are generic

▶ also occur in e.g. packet classifiers, xfrm, etc
▶ some are unique to nf_tables: transaction handling

▶ error unwinding
▶ contradicting requests in transaction
▶ underlying api has more features/capabilities than whats used by nftables itself

▶ most of these bugs are rather old
▶ some are unique to netfilter: mostly local DoS

▶ memory exhaustion
▶ large rulesets/graphs

▶ also ancient problems, but no practical/realistic solutions in sight

→ New sysctls to disable nftables/iptables in unpriv netns by default?



Counterargument: tech debt is everywhere

▶ virtually all bug fixes are now CVEs
▶ ... if one assumes malicious local user
▶ ... fuzzers find plenty of those
▶ in core networking, fs, mm, . . .

▶ kernel not ready for unpriv userns
▶ Assuming DoS: plenty of rope here

▶ Cascade of stacks of virtual devices: ,,team-on-team-on-team-on-bond...“



Time to start breaking things?

▶ Netfilter already doing this to a small degree
▶ 512MB max size of (classic) iptables rulesets ( 100m rules) since 2018
▶ CLUSTERIP target
▶ reduce nf_tables api capabilities (things nft doesn’t do)

▶ add/delete from anonymous sets
▶ add/remove flags in same transaction, etc.

▶ Does xfrm policy need to deal with ipv6 mobility header?

▶ Is there really a use case for team-on-team-on-team?
▶ adding sysctl limits not universal solution

▶ more variance, different behaviours
▶ ,,This bug only occurs if you set sysctls x/y/z to combo ...“
▶ we’re reluctant to remove them again (but not consistenly so)


