
Netconf 2023
Eric Dumazet @ Google

Proprietary + Confidential

Struct file reorganization for networking

dev_queue_xmit_nit() made better

Defer wakeups in TCP/SCTP/MPTCP…

FQ with 3 bands and WRR

UDP listen()/accept()/and 4-tuple lookups

01

02

03

04

05

Agenda

Struct file is silly for networking
commit a7bc2e8ddf3c8e1f5 fs.h: Optimize file struct to prevent false sharing

After this commit, we use 4 cache lines from 'struct file' per socket system call.

fmode_t f_mode; /* 0x14 0x4 */
atomic_long_t f_count; /* 0x18 0x8 */

unsigned int f_flags; /* 0x48 0x4 */

const struct file_operations * f_op; /* 0xb0 0x8 */

void * private_data; /* 0xc8 0x8 */

Cited commit claims an unixbench improvement...

Struct file better layout ?

Keep heavily modified field in separate cache line (to not break benchmarks ?)

But place f_op, private_data, f_flags and f_mode in a single cacheline.

Do not clone packets in dev_queue_xmit_nit()

Maciej Żenczykowski raised the issue on netdev@ in July (Performance question:
af_packet with bpf filter vs TX path skb_clone)

Cloning packets in order to run BPF filters and drop 99% of them makes little
sense.

It would be better to run BPF filter, then clone the skb if we expect to queue it in
af_packet.

We do not need to add a parameter to ptype->func(), we might simply use
skb->pkt_type == PACKET_OUTGOING to determine if cloning is needed after
run_filter() ?

Also need to defer net_timestamp_set(skb) to not mess with EDT.

Defer wakeups in TCP/SCTP/MPTCP/…

sk->sk_data_ready() and friends are usually called while holding the socket lock.

This leads to high spinlock contention in some situations

epoll() and/or process scheduler logic can be quite expensive (cache line
bouncing).

Idea would be to postpone these calls after socket lock is released (under rcu read
lock).

Proprietary + Confidential

Google uses a specialized version of FQ, adding 3 prios/bands (like pfifo_fast) and
WRR scheduling (unlike strict prio of pfifo_fast or prio)

This replicates some of DRR or PRIO functionalities, but with less hops and better
scheduling after a watchdog timer completion.

Time to upstream, after my recent addition of a fast path in FQ ?

FQ with 3 prios and DRR

Proprietary + Confidential

Might help some QUICK servers ?

Answer: Use BPF with SO_REUSEPORT instead ?

UDP listen()/accept()/4-tuple lookups

